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Model for Density Variation at a Fluid Surface 1 

J .  K.  P e r c u s  2 
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A fluid model with freely propagating longitudinal density waves is modified 
by the imposition of an external field. A relation between the resulting 
density inhomogeneity and the applied potential is obtained, depending 
only upon the uniform fluid pair distribution function. This is solved for a 
container-bounded fluid. The resulting surface density profiles for classical 
and zero-temperature Bose hard-sphere fluids compare very well with 
numerical experiments. 
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1 .  I N T R O D U C T I O N  

Recent  numer ica l  work  (1,2~ has  shed new light on the fine s tructure of  the 
surface o f  an equi l ibr ium fluid, be it conta iner- l imi ted  or  a t  a two-phase  
interface.  Several re la ted  approx ima t ions  ~8-5~ to the g round  state o f  a non-  
un i fo rm Bose fluid s t rongly  suggest a decaying spat ia l  osci l la t ion o f  equi- 
l ib r ium densi ty  as one penet ra tes  a fluid bound e d  by  a wall.  This has been 
verified by  accurate  M o n t e  Car lo  calculat ions.  (2~ A t  the other  t empera tu re  
extreme, the mos t  naive layer ing picture  for  a classical ha rd-core  fluid 
suggests densi ty  osci l lat ions no rma l  to  a wa l l -bounded  surface, which also 
accords  with M o n t e  Car lo  results.  (2~ Al though  the Bose fluid behavior  seems 
to lean heavi ly  on the q u a n t u m  na ture  of  the fluid, the classical fluid behavior  
belies this impression.  Thus the phenomenon  appears  more  universal  and  
perhaps  direct ly  re la ted  to other  observable  proper t ies  o f  the fluid, such as 
the  osci l la t ion o f  the radia l  d i s t r ibu t ion  funct ion,  which it cer ta inly resembles.  

Dur ing  the course of  a reexamina t ion  o f  the somewhat  da ted  t rea tment  
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alluded to above, (a) the writer was driven to conclude that while a practical 
sequential approximation procedure for nonuniform fluids remains to be 
found, the empirical relations implied by a very simple model (see, e.g., Ref. 6) 
contain the major substance of more detailed analysed. The model is charac- 
terized by the free propagation of bulk medium longitudinal density waves, 
and static inhomogeneities are built up from forced static amplitudes of these 
waves in response to an external potential. In this paper, we compare the 
consequences of the model for Bose and classical hard-core fluids with results 
of numerical experiments. The comparison indicates that this model can be 
regarded as a very effective zeroth-order approximation. 

2. T H E  M O D E L  

We start with a uniform fluid in thermal equilibrium. The model 
properties to be assumed are contained in the nominally weak assumption 
that longitudinal density waves propagate freely in this medium: 

d2p~/dt 2 + o)~2t~ = 0 
where 

f Pk -- ~(x)e 4~'~ dax = e tk'x, (1) 
4 = 1  

The particle number N will be regarded as sensibly infinite; it will play no 
role, but the uniform density n is the primary parameter to be controlled. 
It is not hard to push this model into internal contradictions, but it is also 
not hard to avoid them. 

If an external potential U = ~ U(&) is now applied, then with the tacit 
assumption of velocity-independent internal forces so that & = pi/m, the 
change in the Hamiltonian AH = U will change the equations of motion by 

(i/h)[ AH, dtD~/dt ] 

= ( / /h ) [~  U(xJ, ~ (ik.p4/2m)e 4~'x, + ~ e4~",ik.p412m] 

= ( -  i/m) ~ k. V U(xJd k'*, 

= -( l /m)  ~ 7V(&). Ve '~'*, = - ( l /m) j  p(x)VU(x).Ve '~''~ dax 

(I/m) f d~'xV �9 [t3(x)V U(x)] dSx 

It is convenient to introduce the operator Ig'(x) as one which satisfies a 

nV2#(x) = v. [~(x)VU(x)] (2) 
a See also Ref. 3, p. II-233, and Ref. 6. 
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essentially weighting the force field by the local density. The equations of  
motion then become 

d2~Jd t  2 + 6okztSk = -- (n/m)k ~ IfV'k (3) 

with the subscript k generally denoting Fourier transform. Now Eq. (3) is of  
course that of a forced harmonic oscillator. Since ( d2~Jd t  2) = 0, we have 
on taking mean values 

pk = --(nk2/mwk2)Wk, nV2W(x )  = V.  [p(x)VU(x)] (4) 

where pk = (fk) ,  Wk = (IS'k), and k # 0. 
In order to apply (4), we must eliminate the model frequencies 6oe in 

favor of direct fluid parameters. For this purpose, let us look at the uniform 
system structure factor 

S(k )  = 1 + nhk = (1 /N) (pk# -k )  (5) 

where g = h + 1 is the radial distribution function. The quantity (pkt~-~) = 
Tr �89 k + t ~- kpk)e-BH/(Tr e-all) is readily obtained from the equations of 
motion if the 6o~ are really c-numbers. Since (1) is solved as 

tSk(t) = [COS(wkt)]fk(0) + 1 [sin(~okt)] dpk(O)/dt (6) 
6O k 

it follows that eBH~ke - ~ =  [cosh(fih6O~)]fik- (i/~%)[sinh(flhwk)] d~k/dt and 
hence that 

i sinh(/3h6Ok) _ [ dpk ) 
Tr(p-k~ke-B') = 6O--~ c o ~  - 1 l r~p_k  ~ e -an~ (7) 

The addition of Tr(pk/~_ke -all) brings in the commutator [fi-k, dpk/dt] and 
on evaluation we find 

S(k )  = (hk2/2moJ~) coth(�89 (8) 

The ~ok are most expeditiously eliminated from (4) and (8) at low and high 
(classical) temperature, yielding the key model expressions 

= f - 4(mn/h2k2)S(k) 2 Wk, T ~ 0 
P~ ~ - n f l S ( k ) W k ,  T - +  oo (9) 

3. C L A S S I C A L  D O M A I N  

Let us in this "section focus on the high-temperature or classical regime. 
It will be useful to make contact with two familiar limiting situations. In the 
first case, (4) and (9) are preferably written in terms of  the direct correlation 
function, which for our purposes may be defined by ~ 

S(k )  = 1/(1 - n c k )  (10) 

For a review of the concepts associated with classical Ornstein-Zernike theory in 
modern guise, see Ref. 7. 
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Reverse Fourier-transforming, we then have from (4) and (9) 

n f  c(x - y)p(y) day + (V2)-IV. [p(x) VflU(x)] = const (11) p(x) + 

which has also appeared in a different context (Ref. 7, p. II-65). Now, let us 
suppose that, due to similar behavior of U(x), O(x) is a slowly varying func- 
tion on the scale of the range of c(x). Hence 

p(x) + n f c ( x -  Y)p(Y)day~ [l + n f c(y)day]p(x) 

= p(x) OfiP/On 

where P(n) is the system pressure, and (11) may be rewritten as 

V. [(OP/~n) Vo(x) + p(x) VU(x)] = 0 (12) 

Equation (12) will be recognized as a consequence of the Archimedean or 
local thermodynamic balance of forces VP(p) + p VU = 0 in any region in 
which OP/a O can be regarded as constant. 

In the second extreme, we imagine U(x) small enough to be regarded as 
a perturbation 8U(x). Then p(x) = n + SO(x) and W(x) = 8U(x) to leading 
order. Hence (9) transformed back to coordinate space reads 

f -i~ 8U(y)[n2g(x - y) - n 2 + n 8(x - y)] day (13) SO(x) 

which is known to be the exact linear response(7) of the local density to an 
external perturbation (an additive constant not appearing if the chemical 
potential is fixed). 

It is also interesting to consider a uniform mixture of fluid particles and 
of vanishing density fictitious wall particles, each of which exerts a wall 
potential. The joint correlation function hw(x, 0) for a fluid particle at x and a 
wall particle at the origin becomes precisely p(x)/n - 1, and the Ornstein- 
Zernike definition of the joint direct correlation function cw(x) =- ew(x, O) 
reads (v 

p(x)/n - 1 = e,~(x) + n f h(x - y)c~(y) day (14) 

This is simply the. nonperturbative version of (13), with the identification 
-~ W(x) = cw(x). Of course, the "wal l "  particle can exert any desired field 
as well. 

In the problem of immediate interest, the external potential is that of a 
(planar) wall defined by 

{ oo, xl < 0 
U(x)= O, xl > O (15) 
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How do we deal with this ? To start with, reliable bulk data in the form of 
S(k) are required. Since S(k) is known exactly for one-dimensional hard 
cores, and quite well via the PY approximation (8) for three-dimensional hard 
cores, these are the cases we will emphasize. There are then three approaches 
available, all ultimately equivalent. In the first, we observe that since p(x) = 0 
when U(x) = 0% the product p 7 U  entering into W is indeterminate when 
xl < 0, but certainly vanishes when xl > 0 since U = 0, with p finite in this 
region. W(x) may clearly be chosen to have the same properties, and so we 
have 

oh = - n ~ S ( k ) w ~ ,  k ~ o 

p ( x ) = O  for xl < O; p(x)-+n for xl--~oo (16) 

W ( x ) = O  for xl > 0 

Equations (16) are indeed sufficient to determine the density O(x). 
A second approach involves using the valid linear response relaxation 

(13) out of its perturbative region of validity. Since a hard-wall potential is 
to be inserted, one has available the hard-core insertion (9) or mean spherical 
model (1~ approximation in which the actual potential in an approximate 
theory is replaced by an effective potential, vanishing outside the "core ,"  
determined by the condition that the density vanish inside the core. Thus (16) 
is exactly reproduced, with W as the effective potential. 

Finally, if h in (14) is taken for hard cores in PY approximation and 
cw = - f l W  satisfies (16), one is simply saying that all direct correlations 
vanish outside infinite potential regions, all densities inside. Since a planar 
wall is the large-radius limit of a hard sphere, (14) then represents a PY 
hard-sphere mixture, which has been solved, (n~ in which one component has 
infinite radius but zero density and is adjusted to cover the negative x~ half- 
space. This limit is readily taken. 

4. H A R D - C O R E  F L U I D  A T  W A L L  

For a fluid at a wall, we must solve Eqs. (16). This may be done in 
principle by a standard Wiener-Hopf  technique (see, e.g., Ref. 12). We first 
observe that p(x) and W(x) will be uniform except in the xl direction, so that 
k2 = k3 = 0 throughout, and x, k will hereafter refer to one-dimensional 
variables. The solution of (16) then depends upon the properties of the func- 
tions involved in the complex k plane. Except at a singular thermodynamic 
state, p'(x) will be absolutely integrable, and it follows that - i kpe  = 
fo o~ p,(x)e~ x dx is analytic and bounded for Im k /> 0. Conversely, - ikW~ = 

fo oo W'(x) et~x dx is expected to be analytic and bounded for Im k ~< 0. 

S(k), obtained experimentally from X-ray or neutron scattering, is not 
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initially defined for complex k. For real k, we have first S ( k )  = 1 + nh~ -+ 1 
as [k[ ~ oo, since h(x)  is not singular. Further, S ( k )  = (1/N)([t3~I 2) > 0 and 
bounded for real k for nonsingular states. Consequently, S ( k )  can be extended 
to the complex plane and may be represented by the Wiener-Hopf  factoriza- 
tion 

S ( k )  = S + ( k ) / S _ ( k )  (17) 

where S+ (k) is analytic, bounded above and below (away from 0) in the half- 
plane Im k /> c_, a negative number, while S _ ( k )  has the same properties for 
I m k  ~< e+, a positive number. Indeed, one has explicit formulas for S . ( k ) ,  
which for real k reduce to 

S , . ( k )  = S ( k )  ~1'2 exp(1/2~ri)P In S(q )  dq/(q - k )  (18) 

where P denotes principal part. Now from (16) and (17) 

- i k p d S +  (k)  = - r i B ( -  ik  W~) /S_  (k)  (19) 

Since the left-hand side is analytic and bounded for I m k  >/0, the right-hand 
side for Im k ~< 0, the common function must be a constant: - ikoe = cS+ (k). 
To evaluate the constant, we note that 

lim - ikpe  = O'(x) dx  = O(x) = n 
I c ~ O  _ g  8 

Hence c = n/S+ (0), and 

in S+(k)  i S _ ( k )  
Ph = k S+(0)' W~ flk S_(O)'  for k r 0 (20) 

the desired solution. If  the explicit (18) is used, then since S(q)  is an even 
function, we have as well S~(0) = S(0)11L 

The function S ( k )  is known exactly (see, e.g., Ref. 13) for a system of 
one-dimensional hard rods, and may be written as 

k / t i P ( 1  - e - ' ~ )  + ik (21) 
S ( k )  = tiP(1 - e ~'~) - ik k 

where a is the hard.rod diameter and P is the system pressure. Since (21) can 
be seen to be precisely the Wiener-Hopf factorization, we have at once [using 
n = tiP~(1 + Pa)] 

pk = ~P/[~P(1  - e 'k~') - ik] (22) 

which is the exact known result. 5 The effective wall potential is readily 

5 See, e.g., Ref. 7, p. 136. 
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transformed back to coordinate space, or obtained from a mixture of  one- 
dimensional cores via ew(x) = - f lW(x ) ,  and (14), and we find 

t 
O, X > 0 

W(x) = [1 - n ( x + a ) ] 0 P / 0 n ,  - a  <<. x <~ 0 (23) 

LOP/On, x <~ - a  

a step function aside from a surface region of  depth a. 
For a three-dimensional hard-core fluid, analytic expressions are avail- 

able neither for S(k) nor for the density profile p(x). However, S(k) can be 
supplied with reliability by the PY approximation, which can be written in 
the form 

k 3 /R( ik)  + L(ik)e -~  
S(k) = (1 - ,/)4 R ( - i k )  -~-L(-ik)e*~/ k 8 

L(t) =- 12~q[(1 + ~ ) t  + (1 + 27)] (24) 

R(t) -- (1 - ~)2t3 + 6~7(1 - v)t 2 + 18~2t - 127(1 + 27) 

where 7/_= ~n/6 and the hard-core diameter is chosen as a = 1. The numerator  
and denominator of  (24) can be shown to have no zeros in their appropriate 
domains, (8) so that (24) is again a Wiener -Hopf  factorization. It  follows on 
carrying out the necessary evaluation at k = 0 that 

p~ = - (6/~-)~7(1 + 2~)k2/[R(- ik) + L ( -  ik)e ~] (25) 

and that 

t 
O, 

W(x) = [1 + ~ n ( x  + 1) 3] OP/On, 

[OP/On, 

x > 0  

- l ~ x ~ 0  

x ~ - I  

(26) 

~(x) = p(x) + p ( L -  x) - n, U(x) = U(x) + U ( L -  x ) -  U~s (27) 

satisfies all conditions for the box. Second, in numerical work, it is the total 

These results can also be obtained, as in the one-dimensional case, by solving 
the PY approximation for a mixture of  two hard-core fluids and letting the 
core diameter of  one fluid go to infinity as its density goes to zero. 

Numerical Fourier analysis to extract p(x) is readily performed. How- 
ever, in comparing with Monte Carlo simulation data on p(x), two technical 
problems arise. First, for obvious physical reasons, the container chosen in 
the simulation has two walls rather than one. However, if the p(x) relevant to 
a single wall decays to its asymptotic value n within the distance L of  the second 
wall, and similarly W(x) to W~s, it is easy to verify that 
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particle number,  or mean density nav, no t  the asymptot ic  density n, which is 
fixed. N o w  

nay = L-Zf~ [p(x) + p ( L  - x )  - n ]  ,ix 

= (2 /L) f  ~ [p(x) - n] dx + n 

f/ = n + (2//.) [o(x) - n] dx 

= n + (2/L)l i ra  I ~ [O(x) - nl e ~  dx 
/I:--.000 

= n + (2/L)lira(Ok - in~k) 
k ~ 0  

Inserting (25), then, 

3 n 2 
nay = n + 2L n + (3/7r) (28) 

[(28) is also related to the interfacial free energy, a problem which will not  be 
considered in the present context.] 

A comparison between the Monte  Carlo results (2> at nay = 0.7 and the 
Fourier  t ransform of  (25) shows (Fig. 1) effective identity for x > 0.1, with 

P 

20 ~ 

1.0. 

I ' x 0 09 1,8 

Fig. 1. C o m p a r i s o n  o f  densi ty  profiles for  a classical fluid o f  un i t -d iamete r  ha rd  cores  at  
a reference densi ty  n = 0.609 in a box  of  wid th  L = 4.5. M o n t e  Car lo  resul ts  are indi-  
ca ted  by the  open  circles, the  present  a p p r o x i m a t i o n  by the  solid curve.  
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slight deviations in the numerically less accurate, rapidly rising x < 0.1 
regime (see also Ref. 14). 

5. C O M M E N T S  O N  C L A S S I C A L  F L U I D  R E S U L T S  

The numerical tests that we have made of the basic approximation (16) 
have certainly been gratifying. Further, integrating out the two irrelevant 
dimensions in (14) for a planar wall and using the  W(x) notation, we have for 
x > 0  

fo [f; ] p(x) = n + 2~rn2fl W(z) dz (y + x)h(y + x ) d y  (29) 
Y 

showing the reason for the resemblance of p(x) to the pair correlation: There 
are essentially two contributions, one due to the spike in W(z) near the origin, 
yielding ocxh(x), and the other to the asymptotic value of W, with a second 
derivative going as xh(x). The former would be produced, except for ampli- 
tude, by regarding the wall as a continuous fixed particle. 

The numerical differences shown in Fig. 1 cannot, however, be lightly 
dismissed, for they indicate a basic deficiency in the approximation. The 
point is this. One knows that the infinite wall force effectively decouples the 
adjacent fluid, so that the ideal gas equation of state 

p(O) =/3P (30) 

holds exactly. On the other hand, the wall density is given in terms of the 
approximate density profile by 

p(O) = O(x) = lira p'(x)d ~x dx = lim - ikp~ 
- Ir lr 

or according to (18) and (20), p(0) ~ n/S(O) 112. But from the familiar relation (v~ 
S(0) = On/OfiP, then 

p(O) ,~ n(O~P/~n) ~I2 (31) 

Equations (30) and .(31) coincide for the hard-rod equation of state/3P = 
n/(1 - na), and only then. Thus, even if the exact S(k) were used instead of 
the PY approximation [which is really the bulk fluid counterpart of (16)] to 
modify (25), there would be a discrepancy in the density profile at the wall. 
Since the discrepancy in Fig. 1 decays very rapidly, it is tempting to attribute 
it to a neglected surface mode. But this is only one of several pictures which 
may be used to improve the agreement, which we shall not discuss further 
at this time. 
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6. BOSE FLUID AT A W A L L  

We proceed to the quantum mechanical T = 0 ~ domain. The approxi- 
mate nature of the formulation (9) is now much more evident. To start with, 
it is true that if isothermal longitudinal acoustic phonons are pure excitations, 
one will have lime_,o c%/k = c = (OP/Omn) ~/2, so that (12) again holds for 
slowly varying applied field. But the interrelation (8), or w~ = hk2/2rnS(k) 
in the T ~ 0 ~ limit, is a consequence of the basic Feynman approximation (zS~ 
and is certainly not exact, even as k ~ 0. 

Going to the opposite extreme, for weak applied field, (9) avers the 
linear response function ~pk/3 Ue = -4(mn/hk2)S(k) 2, which is demonstrably 
not an exact result. For example, for one-dimensional zero-diameter Bose 
hard cores, equivalent in coordinate space probability to spinless free fer- 
mions, it is easy to check that 

3pk = m , [ 2 m r + k  t 
3 Uk ~ 2  k m I ~ ' 1  

4mn(-~k-)) 2 h  = ----h4mn Min((2@n)2 'k-~l) (32) 

identical for small k or large k, but only then. Admittedly, this example is 
also an extreme case, highly colored by a very regular nodal structure in N 
space and a resulting characteristic Fermi wave number k I = mr. Indeed, our 
linear response function would also be a consequence of the Bogoliubov- 
Zubarev approach. (16~ 

A better test of (9) as an adequate leading approximation would be to 
apply it to a more realistic nonuniform quantum fluid. For a fluid bounded 
by a planar wall, (9) of course transcribes at once to 

Oh = - (4mn/h2)[S(k)/k] 2 Wk 

p(x) = 0 for xl < 0; p(x)--~n for x l - + ~  (33) 

W ( x ) = O  for xl > 0  

solvable once more in principle by a Wiener-Hopf factorization. S(k) is only 
known numerically. A plot (Fig. 2) of the relevant quantity (S/k) 2 for a hard- 
core Bose fluid (obtained from Monte Carlo simulation) shows a very strong 
peak in the " r o t o n "  region 6 of the spectrum, quite well represented in the 
present case by a Lorentzian fit 

A 
= (k - k l )  2 + k= = + (k + k l )  = + k~ 2 

6 See also discussion in Ref. 4. 
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Fig. 2. [S(k)/k] 2 for a uniform Bose fluid of unit-diameter hard cores at a density 
n = 0.204. 

N o w  a W i e n e r - H o p f  factorizat ion is trivial, p~ is simply the rational frac- 
t ional par t  o f  (34) without  poles or  zeros in the upper half-plane, and with 
normalizat ion via pk --~ in /k  as k --~ 0. We find 

p~ = - n ( k l  2 + k22) 112 

or, on Fourier- transforming,  

p(x) = n(1  

k + i ( k t  2 + k22) 112 

k ( k  - k~ + ik2)(k  + k~ + ik2) 

cos(klx + ~) ) 
cos �89162 e -g ~  

(35) 

(36) 

where tan ~b = k l / k 2 .  
In  the Monte  Carlo simulation ~2) o f  a Bose fluid at a wall, one has data 

on nay = 0.2 in core units. At  n = 0.204, a best fit for S(k) (19)'7 yields 
kl  ~ 4.2, k2 ~ 0.91. The "exper imenta l "  values are seen (Fig. 3) to be 
matched to within experimental error by the expression (36). Here the 
corrections corresponding to (27) and (28) have again been made, yielding s 
the above asymptot ic  n --- 0.204, and the wall has again been defined by 
p(x)  = 0 for  x ~< 0. Once more, it should be pointed out that  the apparently 
excellent agreement does not  stand up under  very detailed analysis, in par- 
ticular right next to the wall. Since the wave function vanishes linearly in each 
variable at the wall, the density must  vanish quadratically, contrary  to (36). 

7 The density extrapolation has been made via Ref. 3, p. 316. 
0 In the readily derivable form na,,/n = 1 - (sin x2r 2 + ka2) ~12. 
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p/.2 
2.0 

o 
1.0 

Fig. 3. Comparison of density profiles for a Bose fluid of unit-diameter hard cores at a 
mean density nay = 0.2 and a temperature T = 0 ~ in bow of width L = 6.8. Notation as 
in Fig. 1. 

While the qualitative difference may be attributed to the smoothing of the 
high-k hard-core oscillations in the representation (34), one can also make a 
quantitative assessment, which is unlikely to be met. For a wall of constant 
height V--* oe for x < 0, any particle coordinate x < 0 will be decoupled 
from the others, yielding a wave function ~b = A exp[(2mV/h2)lt2x] for 
x < 0, or ~b = A[1 + (2mV/h2)lJ2x] for small x > 0. The wall force is 
P = ( V 3 ( x ) ) =  VA 2, and so the local density for x > 0 becomes the 
quadratic p ( x ) =  limw| ~b(x) 2 =  (2mP/h2)x 2. One consequence is the 
quantum mechanical wall equation of state 

h2 02 '~=o 
P = 4m ~-~ p(x) (37) 

replacing the classical (30). 
We conclude that for quantum as well as classical fluids, a number of 

aspects of nonuniform systems may be obtained with surprising accuracy 
from readily available bulk data. It is easy enough to point out the inadequacies 
of the approximation method we have investigated, but less easy to formulate 
a systematic correction procedure based upon it. 
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